Quantizations of conical symplectic resolutions II: category O and symplectic duality
نویسندگان
چکیده
We define and study category O for a symplectic resolution, generalizing the classical BGG category O, which is associated with the Springer resolution. This includes the development of intrinsic properties paralleling the BGG case, such as a highest weight structure and analogues of twisting and shuffling functors, along with an extensive discussion of individual examples. We observe that category O is often Koszul, and its Koszul dual is often equivalent to category O for a different symplectic resolution. This leads us to define the notion of a symplectic duality between symplectic resolutions, which is a collection of isomorphisms between representation theoretic and geometric structures, including a Koszul duality between the two categories. This duality has various cohomological consequences, including (conjecturally) an identification of two geometric realizations, due to Nakajima and Ginzburg/Mirković-Vilonen, of weight spaces of simple representations of simply-laced simple algebraic groups. An appendix by Ivan Losev establishes a key step in the proof that O is highest weight. Supported by NSA grants H98230-08-1-0097 and H98230-11-1-0180. Supported by an ARC Discovery Early Career fellowship. Supported by NSF grant DMS-0950383. Supported by NSF grant DMS-1151473.
منابع مشابه
Quantizations of conical symplectic resolutions I: local and global structure
We re-examine some topics in representation theory of Lie algebras and Springer theory in a more general context, viewing the universal enveloping algebra as an example of the section ring of a quantization of a conical symplectic resolution. While some modification from this classical context is necessary, many familiar features survive. These include a version of the Beilinson-Bernstein local...
متن کاملPreliminary draft ON THE GEOMETRY OF SYMPLECTIC RESOLUTIONS
1. Poisson schemes 1 2. Hamiltonian reduction in the symplectic case 6 3. Deformations and quantizations of Poisson schemes 9 4. Symplectic singularities 13 5. Symplectic resolutions 18 6. Poisson deformations. 19 7. Purity 22 8. Tilting generators 25 9. Algebraic cycles and cohomological purity 28 10. Appendix 1: On rational singularities 31 11. Appendix 2: Reminder on GIT and stability 33 12....
متن کاملSymplectic Reflection Algebras
We survey recent results on the representation theory of symplectic reflection algebras, focusing particularly on connections with symplectic quotient singularities and their resolutions, with category O, and with spaces of representations of quivers. Mathematics Subject Classification (2000). Primary 16G.
متن کاملGeometric category O and symplectic duality
The purpose of this proposal is to study algebraic symplectic varieties, which arise naturally in algebraic geometry (Hilbert schemes), representation theory (quiver varieties, Springer theory), combinatorics and polyhedral geometry (hypertoric varieties), and string theory (moduli spaces of gauge theories and of Higgs bundles). Our primary interest will be a certain category of sheaves on thes...
متن کاملPoisson traces, D-modules, and symplectic resolutions
We survey the theory of Poisson traces (or zeroth Poisson homology) developed by the authors in a series of recent papers. The goal is to understand this subtle invariant of (singular) Poisson varieties, conditions for it to be finite-dimensional, its relationship to the geometry and topology of symplectic resolutions, and its applications to quantizations. The main technique is the study of a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015